DUAL PROPERTIES OF ORTHOGONAL POLYNOMIALS OF DISCRETE VARIABLES ASSOCIATED WITH THE QUANTUM ALGEBRA Uq(su(2))

نویسندگان

  • R. Álvarez-Nodarse
  • F. Smirnov
چکیده

We show that for every set of discrete polynomials yn(x(s)) on the lattice x(s), defined on a finite interval (a, b), it is possible to construct two sets of dual polynomials zk(ξ(t)) of degrees k = s−a and k = b− s− 1. Here we do this for the classical and alternative Hahn and Racah polynomials as well as for their q-analogs. Also we establish the connection between classical and alternative families. This allows us to obtain new expressions for the Clerbsch–Gordan and Racah coefficients of the quantum algebra Uq(su(2)) in terms of various Hahn and Racah q-polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Summation Formulas from Quantum Algebra Representations

The tensor product of a positive and a negative discrete series representation of the quantum algebra Uq ( su(1, 1) ) decomposes as a direct integral over the principal unitary series representations. Discrete terms can appear, and these terms are a finite number of discrete series representations, or one complementary series representation. From the interpretation as overlap coefficients of li...

متن کامل

Realizations of su ( 1 , 1 ) and U q ( su ( 1 , 1 ) ) and generating functions for orthogonal polynomials

Positive discrete series representations of the Lie algebra su(1, 1) and the quantum algebra U q (su(1, 1)) are considered. The diagonalization of a self-adjoint operator (the Hamiltonian) in these representations and in tensor products of such representations is determined , and the generalized eigenvectors are constructed in terms of orthogonal polynomials. Using simple realizations of su(1, ...

متن کامل

SYMMETRIC POLYNOMIALS AND Uq ( ̂ sl2)

We study the explicit formula of Lusztig’s integral forms of the level one quantum affine algebra Uq(ŝl2) in the endomorphism ring of symmetric functions in infinitely many variables tensored with the group algebra of Z. Schur functions are realized as certain orthonormal basis vectors in the vertex representation associated to the standard Heisenberg algebra. In this picture the Littlewood-Ric...

متن کامل

INVARIANTS AND ORTHOGONAL q-POLYNOMIALS ASSOCIATED WITH Cq(osp(1, 2))

The study of the spherical functions on symmetric spaces can be traced back to Cartan in the 1920s. Since the late 1980s, this theory has been generalized to quantum group and quantum homogeneous spaces began with [Ko, MNU] (see [Di, Le] for an outline of the philosophy of these approaches and the major steps, as well as some recent developments). In this paper, we study homogeneous spaces and ...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007